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Recent modifications of the Rouse theory for polymer melts and concentrated solutions are 
presented and compared with measurements of dynamic modulus and oscillatory first normal 
stress coefficients for cis-1,4-polybutadiene (PB). Measurements of finite-amplitude storage 
modulus and second normal stress coefficient are given alongside with current theories aimed to 
explain these effects. Nonlinear transient measurements for PB melts, although in some cases 
impeded by instrument compliance, provide critical test for theory. The procedure of extending 
results of the network theory to nonlinear behaviour, as  exemplified by Carreau’s model is shortly 
reviewed. I t  can be concluded that molecular theories based on clear, independently testable 
assumptions of molecular architecture, are likely to be better guides for progress in polymer 
dynamics, than empirical theories. 

INTRODUCTION 

Polymer melts are characterized by extreme deviations from linear viscoelastic 
behaviour. There are two competing theories that may explain the myriad of 
complicated results observed in polymer melts and concentrated systems : 
Lodge’s network theory’ based on the kinetic theory of rubber elasticity, in 
which chemical crosslinks are replaced by temporary physical entanglements, 
and the Doi and Edwards theory2 which considers reptation or curvilinear 
diffusion of a single chain along its own contour as the main molecular motion. 
Recently, Curtiss and Bird3 have developed a kinetic theory with constraints 
on bond angles and bond lengths and have also rederived the Doi and 
Edwards theory without conceptual frames like tubes, slip-links or Maxwell 
demons of the Doi and Edwards theory. 

In the limit of linear viscoelasticity the Rouse theory, which is identical to 
the linear network theory, or the generalized Maxwell model, although with 
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54 G.  A. ALVAREZ AND H.-J. CANTOW 

different meanings to the parameters involved, has served the traditional role 
of explaining in molecular terms the behaviour of polymers, particularly the 
frequency dependence of linear viscoelastic functions for polymers in dilute 
solution. 

In this paper we review the achievements of the linear theory and present 
some results on nonlinear viscoelastic functions and the theories aimed to 
explain them, in order to bring into perspective the vast source of molecular 
information available in polymer dynamics. 

THE GENERALIZED MAXWELL MODEL 

The simplest rheological equation containing the notions of viscosity and 
elasticity is the Maxwell model. A superposition of Maxwell models may be 
written :4 

m 

T =  c z p  
p =  I 

where z is the stress tensor, y here the infinitesimal strain tensor and Ap and q p  
are scalars with dimensions of time and viscosity respectively. 

The Rouse theory’ gives expressions for Ap and qp  in terms of molecular 
constants, by idealizing the polymer molecule as composed of N + 1 identical 
Stokes beads connected by N identical Gaussian springs. The results are : 

q p  = ckT1, (3) 

fo is the bead friction coefficient, b is the root-mean-square end-to-end distance 
for two adjacent beads at equilibrium, and c is the number of molecules per 
unit volume. The solution of Eq. (2)  gives for small-amplitude oscillatory 
motion, neglecting solvent contribution : 

i d p  
ioq*(w) = G*(o) = ckT 1 ~ 

p = l  1 + i d p  

where q* is the complex viscosity and G* is the complex modulus. Normal 
stresses cannot be obtained from this model, inasmuch as normal stresses are 
nonlinear effects. 

The development of nonlinear constitutive equations requires, among other 
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VISCOELASTIC FUNCTIONS FOR MELTS 55 

things, that the equations do not depend on local fluid rotation. A coordinate 
frame rotating and translating with the fluid is named corotational. 
Reformulation of the Maxwell model in a corotational frame yields the 
following nonlinear material functions : 

N 

where 'f'f is the first normal displacement stress coefficient and 'f': is the 
complex first normal stress coefficient. 

These results apply strictly to an isolated macromolecule. To simulate 
polymer-polymer interactions in concentrated systems Ferry6 proposed a 
modification of the Rouse theory consisting of two sets of relaxation times 
corresponding to motions below and above the critical length for the onset of 
entanglements characterized by M,, the molecular weight at which the zero- 
shear viscosity changes from its linear dependence on molecular weight to a 3.4 
power law on molecular weight. We have found that a smooth transition 
between the two regimes of relaxation times, namely 

where p e  is the critical mode index 

Pe = MIMC (9) 
agreed better with experiment than the traditional sharp transition.' 

On the contrary, the Doi and Edwards prediction 

implies an extremely sharp transition into the plateau region, in disagreement 
with experiment, as will be shown below. The smooth transition might be 
attributed to fluctuations in the critical molecular weight parameter M,. 

EFFECT OF MOLECULAR WEIGHT DISTRIBUTION 

In order to compare theoretical results with experiments on real polymers it is 
necessary to have a measure of the effect of molecular weight distribution on 
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56 G.  A, ALVAREZ AND H.-J. CANTOW 

the experiment. This can be achieved in principle by integration over the 
molecular weight distribution, when the molecular weight is stated explicitly 
in the equations. We prefer to adopt an empirical approach which is known to 
agree better with experiment.' 

A phenomenological nth-order law for the blending of q species, each of 
weight fraction wi, can be written, after Kurata et d9 

where 
J. 

Hi(A) = h ( 0 ;  t = (13) (fi i =  1 Am-.)'" 

H ( I )  is the distribution function of relaxation times I and Im is the longest 
relaxation time. H is defined by the transform of 

but is usually obtained numerically. The following limits exist 

qo = lim ~ ' ( w )  = 
O + O  

The shift factors ki are given by 

where the empirical law for the zero-shear viscosity of the blend 

?Ob M;1.4 (18) 

is assumed. (Cf. Doi and Edwards qOdis cx M w M , M , +  

EXPERIMENTAL RESULTS AND CALCULATIONS 

The material referred to as the PB melt in the following, consisted of a 97% cis-, 
1.5% 1,2-, 1,4-polybutadiene with molecular weights in kg mol-' 

Mn Mw Mz M ~ + I  
218 488 1078 1942 
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VISCOELASTIC FUNCTIONS FOR MELTS 57 

obtained from gel permeation chromatography and light scattering 
measurements. 

Figure 1 presents the storage modulus us. frequency for the PB melt and a 
24% solution of PB in n-tetradecane, measured in the Instron 3250 Rheometer 
with Eccentric Rotating Disc geometry, referred to 298 K and melt density 
according to standard procedures." Measurements were corrected for 
instrument compliance and inertia. The broken line represents calculations 
from the monodisperse Rouse theory with smooth transition. The solid line 
was calculated by blending of spectra according to the cubic law, for 3 species 
of molecular weights aimed to match the first five moments of the molecular 
weight distribution of PB. The spectra were obtained from Rouse storage 

I I I I I I I 1 
J 

-6 -3 E 3 6 

FIGURE 1 Storage modulus us. frequency masterplot for PB melt 0 and 24% solution in n- 
tetradecane measured in the Eccentric Rotating Disc (ERD) geometry and reduced to 298 K 
and 918 kg mol-' melt density. ~ Rouse theory with heterodispersity correction ; - - - 
Rouse theory with M = 488 kg mol- ' ; . . . . . . Doi-Edwards theory. 
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58 G. A. ALVAREZ AND H.-J. CANTOW 

moduli by means of Tschoegl's third order approximation" and then refined 
iteratively. The Doi and Edwards prediction is given by the dotted line, and 
shows that a sharp transition to the rubber plateau is inadequate to reproduce 
the experiment. 

The loss modulus measured in the same experiment as Figure 1 is shown in 
Figure 2, where it can be seen that the loss modulus or the dynamic viscosity 
v' = G"/w are not very sensitive to the molecular weight distribution. The 
inadequacy of the Doi and Edwards model is even more accentuated in this 
plot that shows that limw+m G" = 0 is unrealistic. 

The shear and normal stresses measured in cone-and-plate oscillatory strain 
are displayed in Figure 3 for the PB melt, a 24% solution of PB in n- 
tetradecane and a PB oil of M, = 6 kg mol- before inertia correction. The 
points are digitized amplifier signals and the lines are sine waves with 

3 

FIGURE 2 Loss modulus as in Figure 1. 
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VISCOELASTIC FUNCTIONS FOR MELTS 59 

optimized amplitude and phase to match the experiment. The shear phase 
angles are seen to vary from near 0 for the melt to nearly 71/2 for the oil. The 
normal forces oscillate at twice the shear frequency and are positively dis- 
placed for sufficiently small inertia effects. Twice the normal phase angle lies 
between the third and fourth circle quadrant and hence the in-phase 
component of the complex first normal stress difference may exhibit a change 
of sign. The displacement and out-of-phase first normal stress coefficients 
calculated with inclusion of inertia" are plotted in Figures 4 and 5 for the PB 
melt, a 24% solution of PB in PB oil (M, = 1.5 kg mol - I )  and a 24% solution of 
PB in n-tetradecane. The theoretical curves are results from the monodisperse 
(broken lines) and polydisperse (solid lines) Rouse theory. It is clearly seen 
that, compared to the dynamic viscosity, the first normal stress coefficients are 
very sensitive to molecular weight distribution, in the terminal region of the 
spectra. However, only the n-tetradecane solutions agree well with theory ; 
there is no explanation at present for the discrepancy. 

To our knowledge, this is the first time oscillatory normal stress coefficients 
are measured for melts. A single frequency demonstration has been given by 
Meissner." 

The zero-shear viscosity and zero-shear first normal displacement stress 
coefficient for the modified Rouse theory are given by : 

Measurements of the zero-shear viscosity for 3 PB oils (M, = 1.5, 3 and 
6 kg mol-') and first normal displacement stress coefficient for one PB oil 
(M, = 6 kg mol-') are presented in Figure 6 us. weight average molecular 
weight, alongside with calculations from the monodisperse Rouse theory and 
from the molecular weight heterogeneity correction with n = 1 below and 
n = 3 above M,. The smooth transition from ro K M ,  to r,, K M:4 can also 
be seen in the plot. No theory is known to have the property of bridging 
viscoelastic functions below and above M,. 

FINITE-AM PLlTU DE STORAGE MODULUS 

The results in previous paragraphs all share a common property of being 
limiting behaviour at infinitesimal strain. We present results now where the 
stress is finite. 

The storage modulus of the PB melt measured in cone-and-plate oscillatory 
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FIGURE 3 Oscillatory input shear strain and output shear and normal stress in cone-and- 
plate geometry: a) PB melt, b) a solution of PB (24%) in n-tetradecane, c) a PB oil with M ,  = 
6 kg mol-'. Points are digitized amplifier signals and lines are sine functions fitted to the experi- 
mental data. 

a) Melt ( M ,  = 488 kg mol-') b) 24 soh. in n-tetradecane 
Temperature 352 K Temperature 313 K 
Frequency 0.996 rad s-  I Frequency 1.578 rad s - '  
Strain amplitude 20.94 mrad Strain amplitude 209.4 mrad 
Cone angle 105 mrad Cone angle 105 mrad 
Plate diameter 40 mm Plate diameter 60 mm 

c) Oil (M, = 6 kg mol-') 
Temperature 298 K 
Frequency 1.578 rad s - '  
Strain amplitude 52.36 mrad 
Cone angle 21 mrad 
Plate diameter 60 mm 
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J 

-6 -3 0 3 6 

FIGURE 4 First normal displacement stress coefficient us. frequency masterplot for PB melt 0, 
a 24% solution of PB in PB oil of M ,  = 1.5 kg mol- and a 24% solution of PB in n-tetradecane 
0 measured in cone-and-plate oscillatory motion and reduced to 298 K and 918 kg mol- '  
melt density. - Rouse theory with heterodispersity correction ; - - - Rouse theory with 
M = 488 kg mol-'. 

shear us. strain is given in Figure 7. The extreme sensitivity of the nonlinear 
storage modulus to the frequency is however, surprising, and could be an 
artifact of the experimental conditions. For comparison, the results of the rigid 
dumbbell theoryI3 as well as a recent extension of the Doi and Edwards theory 
by P e a r ~ o n ~ ~  are shown in Figure 8. Limiting frequencies, which must 
necessarily exist, are of the order of 0.02 and 0.4 rad s - '  for the two theories. 
Our experiment on the other hand, does not show limit in frequencies up to 
20 rad s -  '. There is no explanation for these results. 
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-6 -3 E 3 6 
lag  [ waTac / rods-I] 

FIGURE 5 First normal out-of-phase stress coefficient as in Figure 4 

SECOND-NORMAL STRESS DIFFERENCE 

Another manifestation of nonlinear viscoelastic behaviour in polymers of 
extreme theoretical and practical interest is the second normal stress 
coefficient. 

It has been claimedI5 that the total thrust in the eccentric rotating disc 
experiment gives a measure of the second normal stress coefficient. Such 
measurement is straightforward provided sensitive electronics are at hand to 
record very weak signals. 

The slopes of linear plots of normal stress us. square of strain are given in 
Figure 9 us. angular frequency for the PB melt, including inertia correction. A 
change of sign in this function is apparent. Here a positive stress-us.-square- 
strain slope indicates a tendency of the plates to be pushed apart and hence a 
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64 G .  A. ALVAREZ AND H.-J. CANTOW 

FIGURE 6 Zero-shear viscosity 0 and zero-shear first normal displacement stress coefficient 
A us. weight average molecular weight for PB oils with M ,  = 3, 6 and 12 kg mol-'. ~ 

Heterodisperse Rouse theory with n = 1 below and n = 3 above M , ;  --- M onodisperse 
Rouse theory with smooth transition from q a M to q a M3.4. 

negative second normal stress coefficient by definition. The negative of the 
second normal stress coefficient, omitting positive points, is compared with the 
first normal stress coefficient measured in cone-and-plate geometry, in Figure 
10. Thus, the second normal stress coefficient appears to have a stronger shear 
rate dependence than the first normal stress coefficient. 

Models predicting a stronger shear rate dependence for the second normal 
stress coefficient exist; the power law asymptotes for A,,? + co in the rigid 
dumbbell model for dilute solutions, are given by :13  

1-h  (A,?) - 1'3 -- v l - r l s  - 0.678 - 
nkT& 1 -2h 
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FIGURE 7 
0.6-20 rad s -  '. ...... fit to square law; ~ Doi-Edwards theory at w = cn. 

Finite-amplitude storage modulus us. peak strain for PB melt in frequency range 

1-h 
(n,7)-4'3 

(n,y)- 7 / 3  

y, 

v2 

-- 
nkT2; - '"- 1 -2h 

h 
= 0.93 ~ 

nkTA; 1 -2h 

where h is a parameter indicating the degree of hydrodynamic interaction. 
Thus, the second normal stress coefficient is positive and vanishes in the 

absence of hydrodynamic interaction. Bird and Curtiss have recently shown2' 
that for rigid rodlike molecules Y is positive for models with less than 5 beads 
and negative for models with 5 beads or more. 

Similarly, shear rate powers for melts, obtained by Curtiss and Bird are :I6 
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0.5 1.0 
T o  

1.5 

FIGURE 8 Theoretical predictions of finite-amplitude storage modulus us. peak strain, 
according to rigid dumbbell ...... and Doi-Edwards - -- theory for frequency range 
lo-' rad s - ' .  

Y , / N n k T E v 2  -+ 28 In A j ( , l y ) - 2  Y 2 / N n k T A 2  -+ - 1.1619(1 - ~ ) ( , l y ) - ~ ' ~ .  
The shear rate powers for q and Y ,  in Eqs (21) and (22) agree well with the 
experiments shown below, Figure 12, and the exponent of the power law for 
Y 2  in Figure 10 is -2. 

and 

STEP-STRAIN SHEAR AND NORMAL STRESS RELAXATION 

It is known that the dynamic viscosity and first normal stress coefficients do 
not provide a critical test for the evaluation of rheological models. Better test 
can be obtained from measurements of time-dependent functions. Such 
measurements, however, place severe limitations on instrument performarice 
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FIGURE 9 
melt. 

Second normal stress difference us. frequency measured in ERD geometry for PB 

. .  and care must b.e taken to interpret experiments, as shown below. 
Figure 11  shows shear and normal stress relaxation after a sudden shear 

strain for the PB melt on the Instron 3250 Rheometer in cone-and-plate 
geometry at 298 K. The cone angle was 6" and the plate diameter was 20 mm. 
The broken line is the stress relaxation modulus calculated from the Rouse 
theory with smooth transition into the plateau region and the dotted line is 
calculated by the same theory with a sharp transition. The shear strain was 
around 1, and two consecutive experiments on the same sample are shown. 

For a wide class of constitutive equations including Lodge's network model: 

~ ( t )  = m(t, t ' )y ro l ( t ,  t') dt' s' m 
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FIGURE 10 Comparison of first normal stress coefficient measured in cone-and-plate 
oscillatory motion and negative of second normal stress coefficient (positive points excluded) 
measured in ERD geometry for PB melt. 

where the stress z is related to the material memory function m(t, t') and to the 
contravariant finite-strain tensor. For simple shear in the 1,2 plane a simple 
relationship exists between three components of yIOl referred to a Cartesian 
coordinate system, namely 

Yro111 -Y[0122 = YYIOll2 (25)  

where y is the amount of shear. Assuming that during the time of shear the 
network connectivity does not change, then 

2 1 1 - 2 2 2  = v 1 2  (26) 

at any instant along the time axis. The relationship (25)  is valid also for any 
isotropic function I(ylOl) as follows directly from the definition of isotropy. 
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log  [ t (opJ- '  5-11 

FIGURE 1 1  Shear and normal stress relaxation modulus us. time for step strain experiment, 
y Y 1,  PB melt, 298 K .  -- -~ Rouse theory with smooth transition into plateau regime and 
...... Rouse theory with sharp transition. Two consecutive experiments separated by t = a, 
are shown. 

According to Eq. (24), the two material functions plotted in Figure 11 must 
coincide and failure to do  so could be attributed to instrument error. 

Alternatively, the material does not obey Eq. (24). Other forms for 
constitutive equations have been given by Lodge.' The good agreement 
between the modified Rouse theory and the shear stress relaxation modulus in 
step strain, Figure 11, suggests that the instrument might be rigid enough for 
the torque measurements considered here. 
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lag [ f o p L  I r a d i ' ]  

FIGURE 12 Steady-state viscosity and first normal stress coefficient us. shear rate for PB melt, 
298 K .  Data are recovered from start of shear flow 0, cessation of shear flow and high shear 
rate viscosities from slit die rheometer 0. Lines are predictions of Carreau model. 

TIME-DEPENDENT MATERIAL FUNCTIONS. 
COMPARISON WITH THE NETWORK MODEL 

One of the most successful attempts up to date to modify empirically the 
network theory, is due to C a r r e a ~ . ' ~  More recent attempts have been made by 
Acierno et al.," but no explicit equations can be obtained from their theory. 
We first briefly discuss the linear theory. 

Lodge's network theory' consists of a modification of the kinetic theory of 
rubber elasticity in which crosslinks are conceived as temporary junctions. 
The assumptions concerning the loss rate ofjunctions at time t can be written : 

a 
- I l r t r p +  n, lnrr!p = 0 
at 
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VISCOELASTIC FUNCTIONS FOR MELTS 71 

where I t t t f p  denotes the number of segments of type p per unit volume created in 
time interval t’ to t’ + dt’. The integration of Eq. (27) yields the linear memory 
function : 

with the initial condition 

Carreau” modified the linear memory function by allowing the junction 
creation rate y l p / A i  and the probability of loss of junctions A; to depend on 
the instantaneous value of the second invariant of the rate-of-strain tensor. 
The memory function becomes : 

where f p  = gp = 1 as I1 -+ 0. 

The following material functions are obtained : 
a, 

r =  c r p f p d  

Yl = 2 c r p a p f p g ;  

p =  1 

m 

p =  1 

where q p  and 1, are given by analogy to the Rouse theory by : 

2”A A A, = ~ @ + I ) ” ’  r p = r o r  c 1, 
p =  1 

(37) 
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72 G.  A. ALVAREZ AND H.-J. CANTOW 

Second normal stress coefficients can be obtained by introduction of a new 
strain measure (1  - E ) Y ~ ~ , - E ~ ~ ~ ]  into the constitutive equation, where E is the 
ratio of the second to the first normal stress coefficient. Thef, and g p  functions 
of I1 = 21;' were chosen by Carreau: 

3 

1 + - (2"t,)ZII (p + 1)ZN 
f p  = [: Ti ZR 

R [ 1 + azII]  

1 + - (2"t,)ZII ( p  + 1)Z" 
g p =  [: TI 

F- 4 

(39) 

r' 
rods-'] 

0.818 

a. 848 

a. 198 

8.790 

1 -1 E 1 2 3 
log  [ t c o p p  I 5-11 

FIGURE 13 
0.8 rad s-  I .  Lines are predictions of Carreau model. 

Viscosity at start of steady shear flow us. time, PB melt, 298 K. Shear rate: 0.01- 
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This choice off, and g p  gives for the steady-state viscosity a Cox-Merz type 
relationship and from it the value oft ,  may be obtained, thus 

The Rouse theory gives values of S = 1, a- = 2 and with c = 1 the only 
adjustable parameter left is R which controls the exponent of the power law for 
the first normal stress coefficient. 

Carreau's model was chosen here because it yields explicit material 
functions which revert easily to the linear limit. 

Other modifications of the memory function are conceivable. In particular, 

1' 
rods-'] 

a. 818 

8.899 

0.627 

1.577 

4 4 4  - 4  
I I I I 

-1 0 I 2 3 

log [ t (orad-' I s-I] 

FIGURE 14 First normal stresscoefficient at start of steady shear flow us. time, PB melt, 298 K. 
Shear rate: 0.01-1.6 rad s-' .  Cone angle: 6 degrees, except data at 1.6 rad s- '  where cone angle: 
1.2 degrees. Lines are predictions of Carreau model. 
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74 G. A. ALVAREZ AND H.-J. CANTOW 

stress overshoots can be obtained only for fpgp < 1. We do not consider 
further modifications of the memory function in this paper. 

Figure 12 presents results for the steady-state viscosity and first normal 
stress coefficient for the PB melt at 298 K, recovered from start-up and 
cessation of steady shear flow, as well as measurements on a slit die rheometer. 
The lines are predictions of Carreau's model with the crudely obtained 
parameters as explained above. 

Figure 13 shows the viscosity at start of steady shear flow for the PB melt 
at 298 K, and the model predictions. The two largest shear rates (0.198 and 
0.79 rad s- ' )  were obtained with a cone angle of 1.2" and the other shear rates 
with a cone angle of 6". The plate diameter was 20 mm in every case. There 
is no apparent cone angle effect and furthermore there is no visible stress over- 
shoot in this experiment. 

-1 

I I I \ x  \ 
0 1 2 3 

-2 
-1 

log [ t (a,a$-' / 5-11 

f 
[rods-'l 

0.018 

0.848 

8.198 

0.798 

1.577 

FIGURE 15 
0.01-1.6 rad s- ', Lines are predictions of Carreau model. 

Viscosity at cessation of steady shear flow us. time, PB melt, 298 K. Shear rate: 
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VISCOELASTIC FUNCTIONS FOR MELTS 75 

The first normal stress coefficient at  start of steady shear flow is shown in 
Figure 14. Here the largest shear rate measurement (filled points 1.577 rad s-')  
was obtained with a cone angle of 1.2", the others with a cone angle of 6". A 
large discrepancy appears between measurements with different cone angles. 

The viscosity and first normal stress coefficient at cessation of steady shear 
flow and theoretical predictions are presented in Figures 15 and 16. Cone 
angle effects are again visible, although it can be concluded that the theory 
overestimates the nonlinearity of the PB melt. 

We summarize the results of the transient experiments and their fit to the 
modified network theory, as follows : 1) torque measurements appear to be 
reliable at all cone angles investigated here (1.2 and 6 degrees), 2) thrust 
measurements are probably accurate for cone angles of 6 degrees or more and 
definitely inaccurate for cone angles of 1.2 degrees, 3) the quality of fit between 

9 4 9 4  

-1 0 1 2 3 
log [ t (o,ac]-' / s-11 

u' 

8.818 

8.848 

.rads-'j 

8.198 

1.577 

FIGURE 16 First normal stress coefficient at cessation of steady shear flow as in Figure 15 
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theory and experiment is in the order q +  > Y: > q -  > Y ;,4) better signal- 
to-noise ratio is achieved when the drive motor is not in motion and 5) melt 
instability is a serious problem at the highest shear rates presented here. 

It can be concluded that although empirical modifications of linear theories 
provide some degree of success, and the possibility of observing systematic 
changes in the complete viscoelastic behaviour of polymers is available, the 
real challenge lies in molecular theories which derive functional behaviour 
from clear, independently testable notions of molecular architecture. 
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